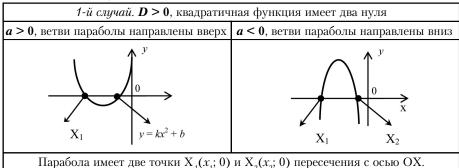
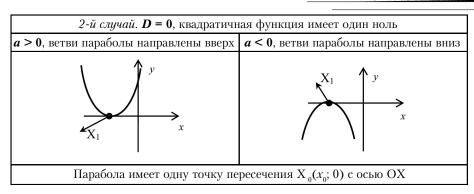
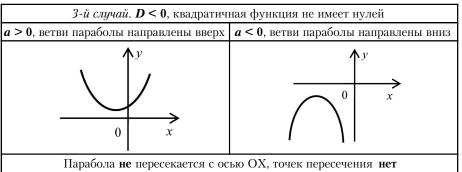
Продолжаем изучение квадратичной функции¹

Елена Ивлиева,


старший научный сотрудник Лаборатории малочисленной школы ИСМО PAO

Тродолжаем публикацию материала для изучения квадратичной функции. В предыдущей статье были рассмотрены вопросы: определение квадратичной функции, формула и её коэффициенты, график и его построение, влияние коэффициентов на расположение графика в координатной плоскости.


Рассмотрим ещё несколько важных вопросов, связанных с изучением квадратичной функции и решением соответствующих типовых задач.


Дискриминант

Правая часть формулы квадратичной функции $y = ax^2 + bx + c$ представляет собой квадратный трёхчлен. **Дискриминантом** трёхчлена называется число $\mathbf{D} = \mathbf{b}^2 - \mathbf{4ac}$. Дискриминант определяет число **нулей** квадратичной функции или число **точек пересечения** параболы с осью ОХ, которых может быть две, одна или ни одной. Проиллюстрируем с помощью параболы эти случаи.

 $^{^{\}bf 1}$ Начало статьи опубликовано в ж. «Сельская школа» №4, 2014 г.

Приведём известную таблицу, которая показывает, как коэффициент \boldsymbol{a} и дискриминант \boldsymbol{D} влияют на расположение параболы в координатной плоскости. Её можно использовать для построения схематического графика квадратичной функции, а также для решения экзаменационных задач на установление соответствия между параболой и данными значениями \boldsymbol{a} и \boldsymbol{D} , нахождение значений коэффициентов (a,b и c) по графику функции и другие.

_	D		
а	D > 0	D = 0	D < 0
<i>a</i> > 0	<i>y x</i>		
a < 0		<i>y x</i>	<i>y</i>

Вопросы к таблицам:

- 1. Как по параболе определить знак коэффициента а?
- 2. Какой вывод можно сделать относительно направления ветвей параболы, если a < 0 (a > 0)?
- **3.** На что при изображении параболы влияет знак дискриминанта D?
- 4. Что нужно знать, чтобы определить положение параболы на координатной плоскости?
- **5.** Определяют ли a и D полностью положение параболы на координатной плоскости?
- 6. Какие ещё коэффициенты формулы квадратичной функции определяют положение параболы? Что определяет коэффициент c и на что влияет коэффициент в?

Примерные задания:

- а) Дискриминант и его значение:
- 1. Вычислите дискриминант данной квадратичной функции:

1)
$$y = 3x^2 + x + 1$$
;
2) $y = 2x^2 - 5$;

3)
$$y = -x^2 - 6 + 5x$$
;
4) $y = x^2$.

2)
$$y = 2x^2 - 5$$
:

4)
$$y = x^2$$
.

2. Сравните дискриминант с нулем каждой из данных квадратичных функций:

1)
$$y = 2x^2 + 5x + 2$$

3)
$$y = x^2 - 4x + 1$$
;

- 1) $y = 2x^2 + 5x + 2$; 3) $y = x^2 4x + 1$; 2) $y = x^2 + 4x 1$; 4) $y = -x^2 + 4x 1$. 3. Среди данных квадратичных функции выпишите те, у которых
- дискриминант отрицательный: 1) $y = 3x^2 + x + 1;$ 3) $y = -x^2 + 5x + 6;$ 2) $y = 2x^2 - 5;$ 4) $y = x^2.$

1)
$$y = 3x^2 + x + 1$$
;

$$3) y = -x^2 + 5x + 6$$

2)
$$y = 2x^2 - 5$$
;

4)
$$y = x^2$$
.

4. Выпишите номера тех рисунков, на которых изображена квадратичная функция с положительным дискриминантом.

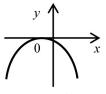


Рис. 1.

Рис. 3.

- б) Число точек пересечения графика квадратичной функции с осью ОХ.
- 1. Изобразите в координатной плоскости следующие точки: A(2; 0), B(4; 0), C(-3;0), E(-1; 0).

Что общего в расположении этих точек?

В чём различие в их расположении?

2. Изобразите точки, соответствующие данным условиям:

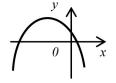
$$\begin{cases} x \cdot \rangle \cdot 0, \\ y = 0 \end{cases}$$

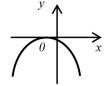
$$\begin{cases} x \cdot \langle \cdot 0, \\ \end{cases}$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

Опишите расположение точек, соответствующих условиям 1, 2, 3?

4. Выпишите номера функций, которые не имеют точек пересечения с ось ОХ:


1)
$$y = 2x^2 + 5x + 6$$
;


3)
$$y = x^2 - 3x + 4$$
;
4) $y = -x^2 + x - 1$.

2)
$$y = x^2 + 3x - 4$$
;

4)
$$y = -x^2 + x - 1$$

5. Используя данные рисунки, запишите число точек пересечения графика с осью ОХ и знак дискриминанта:

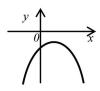


Рис. 1.

Рис. 2.

Рис. 3.

6. Закончите каждое данное утверждение:

- 1. D > 0, точек пересечения с осью ОХ -
- 2. D = 0, точек пересечения с осью OX ____;
- 3. D = 2, точек пересечения с осью OX -
- 4. D = -5, точек пересечения с осью ОХ -
- 5. D < 0, точек пересечения с осью OX -

в) Расположение точек пересечения графика квадратичной функции на оси ОХ.

1. Для данных квадратичных функций определите *координаты* точек пересечения с осью ОХ:

1)
$$y = 3x^2 + x + 1$$
;
2) $y = x^2 - 8x + 16$;

3)
$$y = -x^2 - 5x + 6$$
;
4) $y = x^2 - 4$.

2)
$$y = x^2 - 8x + 16$$

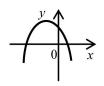
4)
$$y = x^2 - 4$$

2. Используя данные, полученные в задаче 1, выпишите координаты тех точек, *абсциссы* которых положительные.

3. На основе данных заданий 1 и 2 ответьте на вопрос: Какой можно сделать вывод о расположении точек пересечения параболы с осью ОХ относительно начала координат?

4. Установите соответствие между данными утверждениями и рисунками (1-6):

1. Точки пресечения с осью ОХ справа от начала координат.


2. Точки пресечения с осью ОХ расположены по разные стороны от начала координат.

3. Нет точек пересечения с осью ОХ.

4. Точки пресечения с осью ОХ слева от начала координат.

5. Точка пресечения с осью ОХ в начале координат.

6. Одна из точек пересечения в нуле, другая — слева от начала координат.

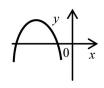


Рис. 1.

Рис. 2.

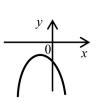


Рис. 3.

Рис. 4.

Рис. 5.

Рис. 6.

5. Выпишите номера тех функций, у которых точки пересечения с осью OX расположены слева от начала координат:

1)
$$y = x^2 + 3x - 4$$
;
2) $y = x^2 + 4x + 3$;

3)
$$y = x^2 + 17x + 60$$
;
4) $y = x^2 + 11x + 28$.

2)
$$y = x^2 + 4x + 3$$
:

4)
$$y = x^2 + 11x + 28$$
.

- 6. Изобразите параболу, у которой точки пересечения с осью ОХ расположены по разные стороны от начала координат. Ответьте на вопросы:
 - 1. Какой вывод можно сделать относительно знака абсцисс этих то-
 - 2. Каким должен быть знак у свободного члена в формуле квадратичной функции при данном условии, если коэффициент a=1?
- г) Расположение графика квадратичной функции на координатной плоскости, построение схематического графика квадратичной функции:

Правило.

Чтобы установить соответствие между параболой и данными о знаках **а** и **D**, надо:

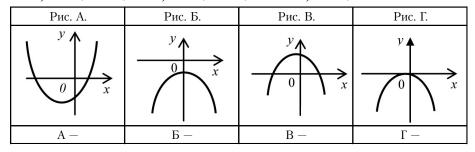
- 1. определить направление ветвей параболы по рисунку и соотнести его с данными о знаке a;
- 2. определить число точек пересечения (или их отсутствие) параболы с осью ОХ и соотнести их с данными о знаке **D**;
- 3. связать номер графика с данными о знаках \boldsymbol{a} и \boldsymbol{D} .

Правило.

Чтобы построить схематический график квадратичной функции — параболу, надо:

- 1. определить направление ветвей параболы по знаку коэффициента а: если, a > 0, то ветви параболы направлены вверх, если, a < 0, то ветви параболы направлены вниз;
- 2. найти нули квадратичной функции (составить уравнение и решить его);
- 3. изобразить систему координат;
- 4. нанести найденные нули на ось ОХ и в соответствии со знаком коэффициента а направить ветви параболы.

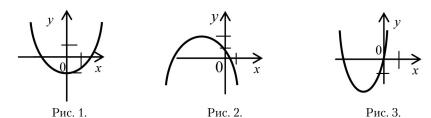
- **1.** Изобразите параболу, имеющую одну точку пересечения с осью OX и ветви которой направлены вниз.
- **2.** Изобразите параболу, не имеющую точек пересечения с осью ОХ и ветви которой направлены вверх.
- **3.** Заполните пропуски в таблице, используя образец, данный в первой строке.


Рисунок	Знак <i>а</i>	Направление ветвей параболы	Знак <i>D</i>	Число точек пересечения с осью ОХ
<i>y x</i>	<i>a</i> > 0	вверх	D 0	две
$ \begin{array}{c c} y & \\ \hline 0 & x \end{array} $		вниз	<i>D</i> = 0	
	a > 0			нет

4. С помощью рисунков установите соответствие между параболами и условиями о знаках \boldsymbol{a} и \boldsymbol{D} :

1) *a* < 0, *D* < 0;

2)
$$a > 0, D > 0$$
;


3)
$$a < 0$$
, $D = 0$.

- 5. Изобразите параболу, соответствующую данному условию:
 - 1) a > 0, D = $\hat{0}$; 2) a > 0, D > 0; 3) a < 0, D = $\hat{0}$; 4) a < 0, D > 0.
- 6. Постройте схематический график квадратичной функции:
 - 1) $y = x^2 + 3x 4$;
- 3) $y = x^2 + 17x + 60$;
- 2) $y = x^2 + 4x + 3$;
- 4) $y = x^2 + 11x + 28$.
- 7. Используя рисунки задания 4, определите, какие из них удовлетворяют условиям: a < 0 и c < 0.
- 8. Изобразите параболу, соответствующую данным условиям:
 - 1) a > 0, c = 0; D > 0,
- 2) a < 0, c < 0; D > 0.

Сколько случаев изображения параболы возможно при данных условиях?

9. С помощью рисунков параболы найдите значение коэффициета c.

Правило.

Чтобы с помощью параболы установить *значение коэффициента* c, нало:

- 1. определить точку пересечения параболы с осью ОУ;
- 2. найти ординату этой точки;
- 3. записать равенство коэффициента c этому значению ординаты.

Свойства квадратичной функции

Свойство (греч. idion; лат. proprium) — то, что присуще какому-либо предмету и характеризует его. Свойства раскрывают особенности квадратичной функции, показывают её отличия от других функций. Свойства квадратичной функции зависят от значений её коэффициентов a, b, c, входящих в её формулу, и дискриминанта D. Парабола (график) даёт наглядное представление о свойствах квадратичной функции.

Схема. Свойства функций²

Рассмотрим некоторые свойства квадратичной функции и проиллюстрируем их с помощью параболы.

² На схеме перечислены не все свойства функций.

І. Область определения функции (ООФ) — это множество всех допустимых значений аргумента x (независимой переменной), при которых выражение, стоящее в правой части функции y = f(x), имеет смысл.

Иногда говорят «область отправления, или источник». Обозначают D(y) или D(f).

Область определения квадратичной функции			
Алгебраическое описание	Графическое описание		
Область определения квадратичной функции — множество действительных чисел (R). Записывают $D(y)$ = (- ∞ + ∞) = R	Все значения абсцисс параболы — ось OX (горизонтальная прямая, ось абсцисс). Это значит, для любого значения x оси OX существует соответствующее значение y оси OY (ординаты), т.е. точка, принадлежащая параболе		

	1	
Иллюстрация на графике		
<i>1-й случай</i> . Ветви параболы вверх	2-й случай. Ветви параболы вниз	
у ф дерементия квадратичной функции — ось ОХ	у 0 х Область определения квадратичной функции – ось ОХ	
Заменание В случае когла парабола булет иначе располагаться на координатной		

Замечание. В случае, когда парабола будет иначе располагаться на координатной плоскости, область определения квадратичной функции не изменится

II. Область (множество) значений функции (ОЗФ) — это множество всех значений, которые может принимать y (зависимая переменная). Иногда говорят «область прибытия». Обозначают E(y) или E(f).

Область значений квадратичной функции		
Алгебраическое описание	Графическое описание	
Областью значений квадратичной функции является числовой промежуток: 1) при $a>0$, $E(y)=[y_0;+\infty);$ 2) при $a<0$, $E(y)=[y_0;-\infty).$ При $a>0$ квадратичная функция ограничена снизу и не ограничена сверху, при $a<0$ — ограничена сверху и не ограничена снизу	Все значения ординат параболы — луч с началом в точке y_0 , расположенный на оси ОУ, направленный вверх, в случае, когда, ветви параболы направлены вверх, и вниз, когда ветви параболы направлены вниз	

Иллюстрация на графике		
1-й случай. Ветви параболы вверх	2-й случай. Ветви параболы вниз	
Область значений квадратичной функции — луч $[y_0; +\infty)$, расположенный на оси ОУ и направленный вверх	y y_0	

Замечание. В случае, когда парабола будет иначе располагаться на координатной плоскости, область значений квадратичной функции будет зависеть от ординаны вершины параболы, определеяющей начало луча и его направление

III. **Нули функции** — это те значения аргумента x, при которых значение функции y равно нулю.

Обозначают x_0 .

Нули квадратичной функции			
Алгебраическое описание	Графическое описание		
-b	 Абсциссы x₁ и x₂, точек пересечения параболы с осью ОХ (при D > 0); Абсцисса x₀ точки пересечения параболы с осью ОХ (при D = 0); Нет точек пересечения с осью ОХ (при D < 0) 		
2a 3) нет нулей, при $D < 0$	(при $D < 0)$		

Иллюстрация на графике			
1-й случай	2-й случай	3-й случай	
$X_{_1}$ и $X_{_2}$ — точки пересечения с осью ОХ, ветви параболы вверх	$X_{_{0}}$ точка пересечения с осью ОХ, ветви параболы вверх	Нет точек пересечения с осью ОХ, ветви вверх	
X_1 X_2 X_2	X_0		
Абсциссы точек $X_{_1}(x_{_1}; 0)$ и $X_{_2}(x_{_2}; 0)$ — нули квадратичной функции	Абсцисса точки $X_{0}(x_{0}; 0)$ является нулём квадратичной функции	Нулей квадратичная функция не имеет	
Замечание. В случае, когда ветви параболы будут направлены вниз, квадратичная функция также будет иметь два нуля, один или не иметь нулей			

- **IV. Промежутки монотонности функции** y = f(x) это такие промежутки значений **аргумента** x, при которых функция y = f(x) возрастает или убывает.
- **1.** Говорят, что функция y = f(x) возрастает на промежутке I, если для любых двух значений аргумента x_1 и x_2 , принадлежащих промежутку I таких, что $x_1 < x_2$, выполняется соотношение: $f(x_1) < f(x_2)$.

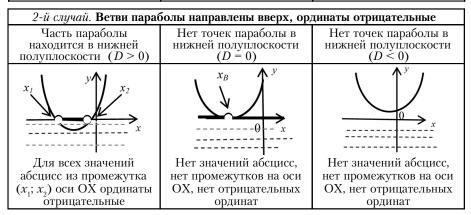
Другими словами, функция y = f(x) возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.

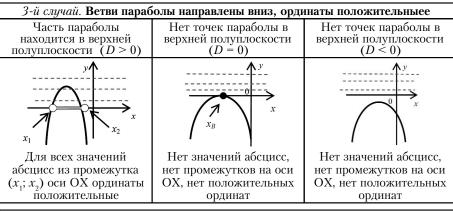
2. Говорят, что функция y = f(x) убывает на промежутке I, если для любых двух значений аргумента x_1 и x_2 , принадлежащих промежутку I таких, что $x_1 < x_2$ выполняется соотношение: $f(x_1) > f(x_2)$.

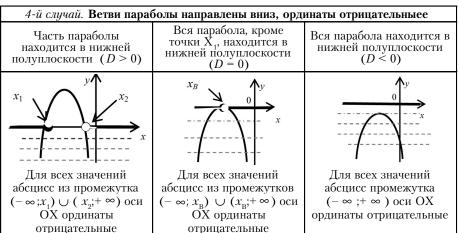
Другими словами, функция y = f(x) убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Промежутки возрастания (убывания) квадратичной функции		
Алгебраическое описание	Графическое описание	
1) При $a > 0$ квадратичная функция	1) Промежуток возрастания параболы — это промежуток на оси ОХ, для всех	
- возрастает для значений $x \in [x_0; +\infty);$	точек которого выполняется условие, с увеличением абсциссы <i>х</i> увеличивается	
- убывает для значений $x \in (-\infty; x_0]$	значение ординаты y .	

Алгебраическое описание	Графическое описание
	Иначе – при движении слева направо по оси ОХ движение по ветви параболы «идёт вверх».
2) При $a < 0$ квадратичная функция - возрастает для значений $x \in (-\infty; x_0];$ - убывает для значений $x \in [x_0; +\infty)$	2) Промежуток убывания параболы — это промежуток на оси ОХ, для всех точек которого выполняется условие, с увеличением абсциссы x уменьшается значение ординаты y . Иначе — при движении слева направо по оси ОХ движение по ветви параболы «идёт вниз».

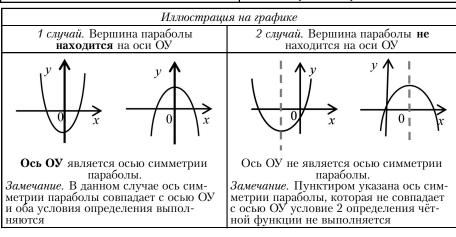

	монотонности функции	
Иллюстрация на графике		
1-й случай. Ветви параболы вверх	2-й случай. Ветви параболы вниз	
Промежуток возрастания — луч с началом в точке х _о (абсцисса вершины параболы)	Промежуток возрастания — луч с началом в точке $x_{_0}$ (абсцисса вершины параболы)	
Для точек выделенного луча движение по левой ветви параболы «идёт вниз».	Для точек выделенного луча движение по правой ветви параболы «идёт вниз».	
Промежуток убывания — луч с началом в точке <i>x_p</i> (абсцисса вершины параболы)	Промежуток убывания — луч с началом в точке $x_{_0}$ (абсцисса вершины параболы)	
Замечание. Количество точек пересечения параболы с осью ОХ не влияет на характер монотонности квадратичной функции, промежутки возрастания или убывания зависят от положения вершины параболы		


V. **Промежутки знакопостоянства функции** y = f(x) — это такие промежутки значений **аргумента x**, на которых функция сохраняет свой знак, то есть y > 0 (положительные значения) или y < 0 (отрицательные значения).


Промежутки знакопостоянства, или сохранение знака квадратичной функции		
Алгебраическое описание	Графическое описание	
1. При $a > 0$, $D > 0$.	Промежутки на оси ОХ, содержащие абсциссы точек	
Значения квадратичной функции положительные	параболы, лежащих выше оси ОХ.	

Промежутки знакопостоянства, или сохранение знака квадратичной функции		
Алгебраическое описание	Графическое описание	
$(y > 0)$ для всех $x \in (-\infty; x_1) \cup (x_2; +\infty)$.	Или промежутки оси ОХ,	
Значения квадратичной функции отрицательные $(y < 0)$ при всех x $(x_1; x_2)$.	которым соответствуют точки параболы, находящиеся в	
2. При $a > 0$, $D = 0$.	верхней полуплоскости.	
Значения квадратичной функции положительные	Промежутки на оси ОХ, содержащие абсциссы точек параболы, лежащих ниже оси ОХ. Или промежутки оси ОХ, которым соответствуют точки параболы, находящиеся в нижней полуплоскости	
$(y > 0)$ для всех $x \in (-\infty; x_1) \cup (x_2; +\infty)$.		
Квадратичная функция не принимает отрицательных значений.		
3. При $a > 0$, $D < 0$.		
Значения квадратичной функции положительные		
$(y > 0)$ для всех $x \in (-\infty; +\infty)$.		
Квадратичная функция не принимает отрицательных значений		
3амечание. Случай $a < 0$ рассмотрен в таблице ниже		
Интератрация из стафина		

3амечание. Случай $a < 0$ ра	ассмотрен в таблице ниже			
Иллюстрация на графике				
1-й случай. Ветви параболы направлены вверх, ординаты положительные				
Часть параболы находится в верхней полуплоскости, $D>0$	Вся парабола, кроме точки X_1 , находится в верхней полуплоскости, $D=0$	Вся парабола находится в верхней полуплоскости, $D < 0$		
Для всех значений абсцисс из промежутков	Для всех значений абсцисс из промежутков	Для всех значений абсцисс из промежутка		
$(-\infty; x_1) \cup (x_2; +\infty)$ оси ОХ ординаты	$(-\infty; x_{\mathrm{B}}) \cup (x_{\mathrm{B}}; +\infty)$ оси ОХ ординаты	$(-\infty; +\infty)$ оси ОХ ординаты положительные		
положительные	положительные			



- VI. Все функции делятся на чётные, нечётные и те, которые не являются ни чётными, ни нечётными.
- **І.** Функция y = f(x) называется **чётной**, если выполняются два условия:
- 1) Для любого значения аргумента x, принадлежащего области определения функции, -x также принадлежит области определения функции.
- 2) Для любого значения аргумента x, принадлежащего области определения функции, выполняется соотношение f(-x) = f(x).
- **II.** Функция y = f(x) называется **нечётной**, если выполняются два условия:
- 1) Для любого значения аргумента x, принадлежащего области определения функции, -x также принадлежит области определения функции.
- 2) Для любого значения аргумента x, принадлежащего области определения функции, выполняется соотношение f(-x) = -f(x).

Чётность (нечётность) квадратичной функции		
Алгебраическое описание	Графическое описание	
1. При $b=0$ квадратичная функция является чётной. $y=ax^2+c$, $D(y)=\mathbb{R}$ и $y(x)=ax^2+c=y(-x)=a(-x)^2+c$. 2. При $b\neq 0$ квадратичная функция не является ни чётной, ни нечётной.	 График чётной функции симметричен относительно оси ординат ОУ. При b = 0 график функции y = ax² + c, симметричен относительно оси ординат. Ось ОУ является осью симметрии. При b≠0 график квадратичной функции не имеет оси симметрии и не имеет центра симметрии. 	

Примерные задания по теме «Свойства квадратичной функции» и решения квадратных неравенств будут рассмотрены в следующем выпуске журнала.