13. Занятие щенка и волчат

1) игра; 2) драка; 3) охота; 4) погоня

14. Волчица не стала есть щенка из-за

- 1) запаха псины 3) слабого здоровья
 - доровья 5) того, что была сытой
- 2) плохих зубов 4) густой шерсти щенка

15. Волчица спутала щенка с

- 1) енотом
 5) кроликом
 9) белкой

 2) зайцем
 6) бобром
 10) волком
- 3) лисой 7) сусликом 4) барсуком 8) медведем

16. Оружие сторожа

- 1) двустволка
 3) пулемёт
 5) автомат
- 2) карабин 4) одностволка

17. Волчиха разгребала солому на крыше

 1) когтями
 3) руками
 5) лапами

 2) ногами
 4) мордой
 6) хвостом

18. По мнению сторожа крышу испортил

- 1) енот 5) кролик 9) белка 2) заян 6) шенок 10) волчина
- 3) лиса4) барсук7) суслик8) медведь

19. Собеседник сторожа

- 1) друг
 5) товарищ
 9) сын

 2) сосед
 6) однополчанин
 10) брат
- 3) знакомый4) сослуживец8) странник

20. Наказание для Белолобого

- 1) лишили корма 4) наказали 6) отругали
- 2) посадили на цепь хворостиной 7) выгнали на мороз 3) оттрепали за уши 5) заперли в сарае 8) отнесли в лес

21. Логово волчицы

 \bigoplus

- 1) избушка лесника
 4) яма
 7) землянка

 2) медвежья берлога
 5) дерево
 8) конура

 3) старое дупло
 6) нора
- 22. Количество волчат у волчицы

1) 1; 2) 2; 3) 3; 4) 4; 5) 5; 6) 6

измерения

МАТЕМАТИКА: ЗАДАНИЯ В ТЕСТОВОЙ ФОРМЕ

Саихат Саншокова

Учитель математики КМОУ СОШ № 1 с. Кахун Урванского муниципального района Кабардино-Балкарской Республики saihat@bk.ru

Компьютерная поддержка курса математики создаёт принципиально новые (дополнительные) возможности для организации усвоения содержания курса. Она позволяет и обогатить содержание, и обеспечить новые активные формы и способы овладения этим содержанием.

Предложенные задания в тестовой форме предназначены для широкого использования учителями математики в повседневной работе, родителями учащихся и, конечно, для самостоятельной работы учеников.

Задания по алгебре для 8 и 9 классов скомпонованы по тематическому принципу и расположены по возрастанию степени трудности. Их можно использовать независимо от учебника, по которому ведётся преподавание, для проверки знаний после прохождения тем «Квадратное уравнение и его корни», «Квадратичная функция и её график».

Вашему вниманию предлагаются задания, в которых правильными могут быть один, два, три и более ответов. Нажимайте на клавиши с номерами всех правильных ответов:

- 1. ЧИСЛА, УПОТРЕБЛЯЕМЫЕ ПРИ СЧЕТЕ ПРЕДМЕТОВ, НАЗЫВАЮТ
 - 1) целыми
 - 2) натуральными
 - 3) рациональными
 - 4) иррациональными
- 2. ЧИСЛО {12,9,25,2,...} ЯВЛЯЕТСЯ
 - 1) пелым
 - 2) простым
 - 3) составным
- 3. ДРОБЬ НАЗЫВАЕТСЯ {правильной, неправильной}, ЕСЛИ ЧИСЛИТЕЛЬ
 - 1) равен
 - меньше

106

1, 2012

•

- 3) больше 4) больше или равен ЗНАМЕНАТЕЛЯ(Ю)
- 4. СОТАЯ ЧАСТЬ ЛЮБОЙ ВЕЛИЧИНЫ НАЗЫВАЕТСЯ
 - 1) соткой
 - 2) процентом
- 5. {Математика царица наук, арифметика- царица математики} СКАЗАЛ(А) ВЕЛИКИЙ МАТЕМАТИК
 - 1) К.Ф. Гаусс
 - 2) Д.И. Менделеев
 - 3) С.В. Ковалевская
 - 4) Н.И. Лобачевский
- 6. МЕЖДУ ЧИСЛАМИ -6 И 4 РАСПОЛОЖЕНО
 - 1)8
 - 2)9
 - 3) 10
 - 4) 11

ЦЕЛЫХ ЧИСЕЛ

- 7. НАИБОЛЬШИМ ПО МОДУЛЮ ЧИСЛОМ ЯВЛЯЕТСЯ
 - 1) -5
 - 2) -2,3
 - 3) -11.5
 - 4) -0,51
 - 5) -12
 - 6) -35
- 8. НАИБОЛЬШИЙ ПРОСТОЙ ДЕЛИТЕЛЬ ЧИСЛА 5460
 - 1) 21
 - 2) 17
 - 3) 13
 - 4) 15
 - 5) 18
 - 6) 123
- 9. НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ ЧИСЕЛ 555 И 275 1) 3

- 2)7
- 3) 5
- 4) 15
- 10. НАИМЕНШЕЕ ОБЩЕЕ КРАТНОЕ ЧИСЕЛ 70, 60 И 90
 - 1) 5400
 - 2) 1260
 - 3) 4200
 - 4) 3780

Геометрия

Вашему вниманию предлагаются задания, в которых надо установить правильную последовательность:

- 1. ГЕОМЕТРИЯ
 - □ наука
 - □ фигур
 - □ теорема
 - □ изучением
 - □ занимающаяся
 - \square геометрических
- 2. {Планиметрия, стереометрия}
 - \Box фигур
 - □ раздел
 - □ теорема
 - □ свойства
 - □ изучается
 - □ в котором
 - □ геометрии
 - □ изучаются
 - □ на плоскости
 - \square геометрических
 - \square в пространстве
- 3. АКСИОМА
 - \Box которое
 - \square теорема

 \bigoplus

- \square не требует
- □ определение
- □ утверждение
- □ высказывание
- \square доказательств

Методика

измерения

4. TEOPEMA	□ — отрезок
□ — которое	□ — биссектрисы
□ — требу́ет	□ — треугольника
□ — определение	□ — соединяющий
□ — утверждение	□ — противоположной
□ — высказывание	□ — вершину треугольника
□ — доказательств	
	10. ВЫСОТА ТРЕУГОЛЬНИКА
5. ЛЕММА	□ — сторону _
□ — теорема	□ — к прямой
□ — требует	□ — из вершины
□ — определение	□ — содержащей
□ — утверждение	□ — прилежащий
□ — доказательств	□ — треугольника
□ — вспомогательная	□ — проведённый
C OTDEROW	□ — перпендикуляр
6. ОТРЕЗОК	□ — противоположную
□ — линия	11. ПАРАЛЛЕЛОГРАММ
□ — часть	□ — фигура
□ — прямая	□ — прямых
□ — прямой	□ — стороны
□ — точка	□ — попарно
7. ПРЯМАЯ	□ — которого
□ — в обе	□ — параллельны
□ — линия	□ — на плоскости
□ — которая	□ — четырёхугольник
□ — стороны	□ — противоположные
□ — бесконечно	_
□ — геометрическая	12. РОМБ
□ — простирающаяся	\Box — BCE
	□ — равны
8. МЕДИАНА ТРЕУГОЛЬНИКА	□ — фигура
□ — отрезок	□ — стороны
□ — который	\square — у которого
□ — вершину	□ — параллелограмм
□ — стороны	□ — четырёхугольник
□ — с серединой	13. КВАДРАТ
□ — треугольника	
□ — соединяющий	□ — BCe
□ — противоположной	□ — углы □ — рамб
0 FIACCEUTDIACA	□ — ромб
9. БИССЕКТРИСА	□ — равны
ТРЕУГОЛЬНИКА	□ — фигура
□ — угла	□ — стороны □
□ — отрезок	□ — у которого □
□ — стороны	□ — прямоугольник
$\Box - c$ точкой	□ — четырёхугольник

(

14. ТРАПЕЦИЯ	□ — прямые
□ — две	□ — секущей
□ — а две	□ — накрест
□ — лежат	□ — лежащие
□ — другие	□ — параллельны
□ — стороны	□ — пересечении
\square — у которого	10. Признак парадледи по
□ — не параллельны	19. ПРИЗНАК ПАРАЛЛЕЛЬНО-
□ — четырёхугольник	СТИ ДВУХ ПРЯМЫХ
□ — стороны параллельны	□ — TO
15. ОКРУЖНОСТЬ	□ — при
□ — точки	□ — если
□ — точек	□ — двух
□ — из всех	□ — углы □ — равин
□ — фигура	□ — равны □ — прямых
□ — от данной	□ — прямых □ — прямые
□ — состоящая	□ — секущей
□ — расстояний	□ — параллельны
□ — на заданном	□ — пересечении
□ — расположенных	□ — соответственные
□ — геометрическая	
16. ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ	20. ПРИЗНАК ПАРАЛЛЕЛЬНО-
	СТИ ДВУХ ПРЯМЫХ
□ — прямые □ — которые	\Box — TO
□ — пересекаются	□ — при
□ — не пересекаются	$\Box-180^{ m o}$
пе пересекаютея	□ — если
17. ПЕРПЕНДИКУЛЯРНЫЕ	□ — двух
ПРЯМЫЕ	□ — сумма
□ — под	□ — углов
□ — углом	□ — равна
□ — которые	□ — прямых
□ — прямые	□ — прямые
□ — прямым	□ — секущей
□ — пересекаются	□ — параллельны _
□ — не пересекаются	□ — пересечении —
18. ПРИЗНАК ПАРАЛЛЕЛЬНО-	□ — односторонних
СТИ ДВУХ ПРЯМЫХ	21. НЕРАВЕНСТВО
□−то	ТРЕУГОЛЬНИКА
□ — при	□ — двух
□ — если	□ — суммы
□ — двух	□ — других
□ — углы	□ — каждая
□ — равны	□ — сторона
□ — прямых	□ — меньше

Методика

Методика

109

1'2012

П	_	сто	DOH
$\mathbf{-}$		c_{10}	ρ_{OI}

□ — треугольника

Вашему вниманию предлагаются задания, в которых правильными могут быть один, два, три и более ответов. Нажимайте на клавиши с номерами всех правильных ответов.

- 1. TEOPEMA 9TOУТВЕРЖДЕНИЕ, КОТОРОЕ
 - 1) требует
- 2) не требует ДОКАЗАТЕЛЬСТВА
- 2. РАЗДЕЛ ГЕОМЕТРИИ, В КОТОРОМ ИЗУЧАЮТСЯ СВОЙСТВА ГЕОМЕТРИЧЕС-КИХ ФИГУР {на плоскости, в пространстве} НАЗЫВАЕТСЯ
- 3. ЕСЛИ В ТРЕУГОЛЬНИКЕ {две, три} СТОРОНЫ РАВНЫ, TO OH
 - 1) тупоугольный
 - 2) остроугольный
 - 3) равносторонний
 - 4) прямоугольный
 - 5) равнобедренный
- 4. В ТРЕУГОЛЬНИКЕ ПРОТИВ БОЛЬШЕЙ СТОРОНЫ ЛЕЖИТ УГОЛ.

А ПРОТИВ МЕНЬШЕГО УГЛА ЛЕЖИТ БОЛЬШАЯ

5. СУММА УГЛОВ {треугольника, четырёхугольника, пятиугольника} РАВНА

- 1) 720°
- $5)900^{\circ}$
- $2) 180^{\circ}$
- 6) 1440°
- $3)\,360^{\circ}$
- $7)\ 1000^{\circ}$

 \bigoplus

- $4)540^{0}$
- 8) 2440°

6. РАВНОБЕДРЕННЫМ ТРЕ-УГОЛЬНИКОМ НАЗЫВАЕТСЯ ТРЕУГОЛЬНИК, У КОТОРОГО

- 1) два угла
- 2) все углы
- 3) все стороны
- 4) две стороны РАВНЫ

7. В ПАРАЛЛЕЛОГРАММЕ

- 1) два угла равны
- 2) две стороны равны
- 3) противоположные стороны и углы равны
- 4) две стороны параллельны, а две другие не параллельны
- 5) противоположные стороны лежат на параллельных прямых
- 6) диагонали пересекаются и точкой пересечения делятся пополам

8. ПРИЗНАКИ ПАРАЛЛЕЛО-ГРАММА

- 1) два угла равны
- 2) две стороны равны
- 3) диагонали пересекаются
- 4) противоположные углы равны
- 5) две стороны равны и параллельны
- 6) диагонали пересекаются и точкой пересечения делятся пополам
- 9. ТРАПЕЦИЯ НАЗЫВАЕТСЯ РАВНОБЕДРЕННОЙ, ЕСЛИ ЕЁ

РАВНЫ	

10. РОМБ — ЭТО

У КОТОРОГО ВСЕ РАВНЫ

Квадратное уравнение. Формула корней квадратного уравнения

(Алгебра 8 класс)

Каждое из уравнений $-x^2 + 6x + 1,4 = 0$, $8x^2 - 7x = 0$, $x^2 - 16 = 0$ имеет вид $ax^2 + bx + c = 0$, где x — переменная, a, b и c — числа. В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = -16. Такие уравнения называются квадратными.

Квадратным уравнением называется уравнение вида $ax^2 + bx + c = 0$, где a, b и с — некоторые числа, причём $a \neq 0$, а х — независимая переменная.

Числа a, b и c — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b — вторым коэффициентом и число с — свободным членом.

В каждом из уравнений вида $ax^2 + bx + c = 0$, где $a \neq 0$, наибольшая степень переменной х-квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х² равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения

$$x^2 - 11x + 30 = 0$$
, $x^2 - 6x = 0$, $x^2 - 16 = 0$.

Если в квадратном уравнении $ax^2 + bx + c = 0$ хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением.

Чтобы решить квадратное уравнение по формуле, надо

1) вычислить дискриминант по формуле $D = b^2 - 4ac$

2) если D > 0, то
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3) если D = 0, то
$$x = \frac{-b}{2a}$$
;

4) если D<0, то действительных корней нет.

ЗАДАНИЯ ПО ТЕМЕ «Квадратные уравнения»

Вашему вниманию предлагаются задания, в которых правильными могут быть один, два, три и более ответов. Нажимайте на клавиши с номерами всех правильных ответов.

1. ЯВЛЯЮТСЯ КВАДРАТНЫ-МИ УРАВНЕНИЯМИ

1)
$$-x^2 + 4x = 0$$

2)
$$5x^2 - 7x + 6 = 0$$

$$3) -15x + 1 = 0$$

4)
$$x^2 + 4x + 9 = 0$$

5)
$$1,35x - 4 = 0$$

6) $6x^2 - 3x = -1$

7)
$$3x^2 = 0$$
;

8)
$$-8,3x^2+8=0$$

9)
$$x^2 - 16 = 0$$

2. В КВАДРАТНОМ УРАВНЕ-НИИ $2x^2$ - 7x - 5=0 { α ,b,c} PA-ВЕН

3. НЕПОЛНЫМ КВАДРАТНЫМ УРАВНЕНИЕМ НАЗЫВАЕТСЯ УРАВНЕНИЕ ВИДА

1)
$$ax^2 = 0$$

2)
$$ax^2 + bx + c = 0$$

3)
$$ax^2 + c = 0$$
, где $c \neq 0$

4)
$$ax^2 + bx + c = 0$$
, где $b \neq 0$

1, 2012

Методика

me i othika

ПЕД

измерения

- 4. НЕ ИМЕЮТ КОРНЕЙ НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ
 - 1) $2x^2 5 = 0$
 - 2) $x^2 + 13 = 0$
 - 3) $x^2 3.7x = 0$
 - 4) $3x^2 + 1 = 0$
 - 5) $x^2 6x = 0$
 - 6) $0.2x^2 13 = 0$
- 5. В КВАДРАТНОМ УРАВНЕ-НИИ $5x^2 - 9x + 4 = 0$ КОЭФФИ-ЦИЕНТ {a,b } PABEH
 - 1) -5 2)9
- 4) 45)4
- 3) 5
- 6) -9
- 6. В КВАДРАТНОМ УРАВНЕ- $HИИ - x^2 - 8x + 10 = 0 KOЭФФИ-$ ЦИЕНТ {a,b } PABEH
 - 1)-1
- 4) 8
- 2)8
- 5) 1
- 3) 10
- 6) 10
- 7. РАСПОЛОЖИТЕ В ПОРЯДКЕ {возрастания, убывания} КО-
- ЭФФИЦИЕНТА {a,b,c} СЛЕДУЮЩИЕ УРАВНЕНИЯ
 - \Box -2x² 7x 5 = 0
 - $\Box x^2 + 6x + 3 = 0$
 - \Box -0.2 x^2 3.7x + 12 = 0
 - $\Box x^2 12x + 1 = 0$
 - \Box -5x² 6x 3 = 0
 - $\Box 0.2x^2 + 12x 13 = 0$
 - $\Box x^2 17x 50 = 0$
 - $\Box 23x^2 48x 32 = 0$
 - $\Box 10x^2 + 2x 1 = 0$
- 8. ЕСЛИ $\{D>0, D<0, D=0\}$, ТО КВАДРАТНОЕ УРАВНЕНИЕ ИМЕЕТ

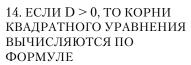
 \bigoplus

- - 2 корня 2) 0 корней

 - 3) 1 корень
 - 4) 3 корня

- 9. ЕСЛИ КВАДРАТНОЕ УРАВНЕНИЕ ИМЕЕТ ДВА КОРНЯ. ТО
 - 1) D > 0
 - 2) D < 0
 - 3) D = 0
 - 4) $D \ge 0$
 - 5) D \leq 0
- 10. КВАДРАТНОЕ УРАВНЕНИЕ НЕ ИМЕЕТ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ, ЕСЛИ
 - 1) D \geq 0
 - 2) D < 0
 - 3) D = 0
 - 4) D \leq 0
 - 5) D > 0
- 11. УРАВНЕНИЕ $5x^2-7x+6=0$ ИМЕЕТ
 - 1) 1 корень 3) 3 корня
 - 2) 2 корня 4) 0 корней
- 12. КВАЛРАТНОЕ УРАВНЕНИЕ $\{2x^2 + 3x + 1 = 0, 2x^2 + x + 2 =$ $= 0, 9x^2 + 6x + 1 = 0, x^2 + 5x - 6 =$ = 0) ИМЕЕТ
 - 1) 2корня
 - 2) 1корень
 - 3) 0 корней
- ПОТОМУ ЧТО
 - 1) D > 0
 - 2) D < 0
 - 3) D = 0
- 13. УРАВНЕНИЕ $4x^2 + 2x m = 0$ ИМЕЕТ ЕЛИНСТВЕННЫЙ КОРЕНЬ, ЕСЛИ т РАВЕН
 - 1) 0.5
 - 2) -0.25
 - 3) 0,25
 - 4) -0.5

 - 5) -1



1)
$$x = \frac{b \pm \sqrt{b^2 - 4ac}}{a}$$

3)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{3a}$$

$$2) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$4) x = \frac{b \pm \sqrt{b^2 - 4ac}}{4a}$$

15. КОРНЯМИ УРАВНЕНИЯ $5y^2$ - 6y + 1 = 0 ЯВЛЯЮТСЯ

- 1) -0,2; 1
- 4) -1; -0,2
- 2) -1; 0,2
- 5) 0; 1
- 3) 0,2; 1 6) -1; 4

16. КОРНЯМИ УРАВНЕНИЯ $4y^2 + y - 33 = 0$ ЯВЛЯЮТСЯ

- 1) -3: 2
 - 4) -3; 2
- 2) -3; -2 3) 2; 3
- 5) 3; -2 6) 2; 3

17. КОРНИ УРАВНЕНИЯ $3x^2 - 7x + 4 = 0$

- 1) 1; 1
- 2) -1; 1
- 3) -1; 1
- 4) -1; -1

18. КОРНИ УРАВНЕНИЯ $3x^2 - 13x + 14 = 0$

- 1) -2; 2
- 2) 2; -2
- 3) 2; 2
- 4) -2; -2

19. КОРНИ УРАВНЕНИЯ

- $5x^2 8x + 3 = 0$
 - 1) 0,6; -1
 - 2) 0,6; 1 3) -0,6; -1
 - 4) -0,6; 1

20. КОРНИ УРАВНЕНИЯ $2v^2 - 9v + 10 = 0$

- 1) -2,5; -2
- 2) 2; 2,5
- 3) -0,6; -1
- 4) -0,6;

21. СОГЛАСНО ОПРЕДЕЛЕ-НИЮ, В ПРИВЕДЁННОМ КВАДРАТНОМ УРАВНЕНИИ КОЭФФИЦИЕНТ а РАВЕН

22. СОГЛАСНО ТЕОРЕМЕ ВИЕ-ТА, В

КВАДРАТНОМ УРАВНЕНИИ

КОРНЕЙ

PABHA KO-

ЭФФИЦИЕНТУ, ВЗЯТОМУ С

_____ЗНА-

KOM, A _____

КОРНЕЙ РАВ-НО ЧЛЕНУ

23. {приведённые, неполные} КВАДРАТНЫЕ УРАВНЕНИЯ

- 1) $5x^2 9x + 4 = 0$
- 2) $x^2 + 3x 10 = 0$
- 3) $-x^2 8x + 1 = 0$
- 4) $x^2 + 5x = 0$
- 5) $6x^2 30 = 0$
- 6) $9x^2 = 0$
- 7) $4x^2 50 = 0$
- 8) $x^2 48x = 0$

 \bigoplus

ПЕД

измерения

24. КОРНИ УРАВНЕНИЯ

 $x^2 + 5x - 6 = 0$ ПРИНАДЛЕЖАТ

- 1) (-6; 1)
- 4) [-6; 1]
- 2) [-7; 0)
- 5) [0; 3)
- 3) [-6;1)
- 6)(-10;0]

25. СУММА КОРНЕЙ УРАВНЕ-НИЯ $x^2 + 11x - 12 = 0$ ПРИНАЛЛЕЖИТ

- 1) (-20;-2)
- 4) (-10;-8)
- 2) (11;20)
- 5) (10; 12)

- 3) (-12;-11,5)
- 6) (-11;-3)

26. ПРОИЗВЕДЕНИЕ КОРНЕЙ УРАВНЕНИЯ $x^2 + 2x - 48 = 0$ ПРИНАДЛЕЖИТ

- 1) (-48;-30)
- 4) [48;52)
- 2) (-50;-49)
- 5) (0; 48)
- 3) [-48;2)
- 6) (-47;-1)

27. ПРОИЗВЕДЕНИЕ КОРНЕЙ УРАВНЕНИЯ $-x^2 + 4x = 0$ **PABHO**

- 1)4
- 3) -4
- 2) 0
- 4)5

28. {Сумма, произведение} КОР-НЕЙ УРАВНЕНИЯ

 $x^2 - 37x + 27 = 0$ PABHA

- 1) 27
- 3) 27
- 2) -37
- 4)37

29. {Сумма, произведение} КОР-НЕЙ УРАВНЕНИЯ $\{x^2 - 210x = 0, y^2 + 41y - 371 = 0,$ $v^2 - 19 = 0$ PABHA

- 1) -210
- 6) 19
- 2) 41
- 7) 41
- 3)0
- 8) 371
- 4) -371
- 9) 25
- 5) 210
- 10) -34

 \bigoplus

30. КОРНИ УРАВНЕНИЯ

$$\{x^2 + 7x - 1 = 0, y^2 - 7y + 1 = 0,$$

- $5x^2 + 17x + 16 = 0$ } ИМЕЮТ
 - 1) одинаковые
 - 2) разные

ЗНАКИ

31. КВАДРАТНОЕ УРАВНЕ-НИЕ С КОРНЯМИ $\sqrt{2}$ И $-\sqrt{8}$ ИМЕЕТ ВИД

- 1) x^2 x-4=0
- 2) $x^2 x \sqrt{8} = 0$
- 3) $-x^2-\sqrt{6}$ x+2=0
- 4) $x^2 + x 4 = 0$
- 5) $x^2 \sqrt{2} x + 4 = 0$
- 6) $2x^2 + 2\sqrt{2} x-8=0$

32. КВАДРАТНОЕ УРАВНЕ-НИЕ С КОРНЯМИ $\sqrt{12}$ И $-\sqrt{3}$ ИМЕЕТ ВИД

- 1) x^2 x -6=0
- 2) $x^2 + \sqrt{3}$ x+6=0
- 3) $x^2 + \sqrt{3} x 6 = 0$
- 4) $x^2 + \sqrt{3} x 12 = 0$
- 5) $-2x^2 \sqrt{3}x + 6 = 0$
- 6) $2x^2 2\sqrt{3} \quad x-12=0$

33. ЕСЛИ ОДИН ИЗ КОРНЕЙ УРАВНЕНИЯ $x^2 + px - 35 = 0$ РАВЕН 7, ТО ДРУГОЙ КОРЕНЬ УРАВНЕНИЯ РАВЕН

- 1)5
- 3) -5
- 2) -8
- 4) 28

И КОЭФФИЦИЕНТ р РАВЕН

- 1) 12
- 4)3
- 2) -2
- 5) 2

3) -12 6) 14

34. ЕСЛИ ОДИН ИЗ КОРНЕЙ УРАВНЕНИЯ $x^2 - 13x + q = 0$ РАВЕН 7. ТО ЛРУГОЙ КОРЕНЬ УРАВНЕНИЯ РАВЕН

- 1) 1,5
- 4) 4.5

5) 0,5

6) -1

И СВОБОДНЫЙ ЧЛЕН РАВЕН

- 1) 12
- 2) 18,75
- 3) 12,5
- 4) -18,75
- 35. ЕСЛИ ЧИСЛА -1 И 3 ЯВЛЯЮТСЯ КОРНЯМИ УРАВНЕНИЯ $kx^2 + px + 3 = 0$,

1)
$$k = 1$$
, $p = 2$ 4) $k = -1$, $p = -2$

2)
$$k = -1$$
, $p = 2$ 5) $k = 1$, $p = -2$

3)
$$k = 2$$
, $p = 1$ 6) $k = -2$, $p = 1$

36. ЕСЛИ ЧИСЛА -3 И 1 ЯВЛЯЮТСЯ КОРНЯМИ УРАВНЕНИЯ $kx^2 + px + 3 = 0$,

1)
$$k = 1$$
, $p = -2$ 4) $k = -1$, $p = 2$

2)
$$k = -2$$
, $p = 1$ 5) $k = 2$, $p = 2$

3)
$$k = -1$$
, $p = -2$ 6) $k = 1$, $p = 2$

37. ЕСЛИ ЧИСЛА -3 И -1 ЯВЛЯЮТСЯ КОРНЯМИ $УРАВНЕНИЯ kx^2 + px + 3 = 0$, TO

1)
$$k = -1$$
, $p = -4$ 4) $k = 1$, $p = 2$

2)
$$k = 1$$
, $p = -4$ 5) $k = 1$, $p = 4$

3)
$$k = 2$$
, $p = 4$ 6) $k = -1$, $p = 4$

5)
$$k = 1, p = 4$$

6) $k = -1, p = 4$

ЗАДАНИЯ ПО ТЕМЕ «Квадратичная функция и её график» (Алгебра 9 класс)

Вашему вниманию предлагаются задания, в которых правильными могут быть один, два, три и более ответов. Нажимайте на клавиши с номерами всех правильных ответов.

- 1. КВАЛРАТИЧНОЙ ФУН-КЦИЕЙ НАЗЫВАЕТСЯ ФУН-КЦИЯ, ЗАДАННАЯ ФОРМУ-ЛОЙ ВИДА
- 1) y = , где x независимая переменная;

- 2) $y = ax^2 + bx + c$, где a, b и с — некоторые числа, причём $a \neq 0$, а x — независимая пере-
- 3) $y = ax^2 + bx + c$, где a, b и c — некоторые числа, а x — независимая переменная;
- 4) y = kx + b, где k u b некоторые числа, причём $k \neq 0$, а х — независимая переменная.
- 2. ГРАФИКОМ КВАДРАТИЧ-НОЙ ФУНКЦИИ ЯВЛЯЕТСЯ
 - прямая
- 3) гипербола
- 2) парабола 4) синусоида
- 3. ОБЛАСТЬ ОПРЕДЕЛЕНИЯ КВАДРАТИЧНОЙ ФУНКЦИИ

1)
$$(-\infty; 0)$$

4)
$$(-\infty; +\infty)$$

2)
$$(0;+\infty)$$

5)
$$(0; +\infty)$$

3)
$$(-\infty; 0)$$

4. КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ ВЫЧИСЛЯЮТ ПО ФОРМУЛЕ

1)
$$x_0 = -\frac{b}{2a}$$
, $y_0 = \frac{b^2 - ac}{4a}$

2)
$$x_0 = -\frac{b}{2a} y_0 = \frac{-b^2 + 4ac}{4a}$$

3)
$$x_0 = \frac{b}{2a}$$
, $y_0 = \frac{-b^2 + 4ac}{a}$

4)
$$x_0 = -\frac{b}{a}$$
, y_0

5)
$$x_0 = \frac{b}{2a}$$
, $y_0 = \frac{b^2 + ac}{2a}$

5. КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ $y = -2x^2 + 8x - 13$

 \bigoplus

$$6)(4;-5)$$

Методика

ПЕД

измерения

- 6. КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ $y = 2x^2 + 12x + 15$

 - 1) (-3; -6) 4) (-3; -3)
 - 2) (-6; 3)
- 5) (3; 36)
- 3) (3; 69)
- 6) (-6; 15)
- 7. ПРОМЕЖУТОК {возрастания, убывания} ФУНКЦИИ $y = -2x^2 + 7x - 3$
 - 1) $(-\infty; 1,75]$
 - 4) $(1,75; +\infty)$
 - 2) $[-3,5; +\infty)$ 5) $[1,75; +\infty)$
 - 3) $(-\infty; 3,5]$
- 6) (-3,5; 3,5)
- 8. МНОЖЕСТВО ЗНАЧЕНИЙ ФУНКШИИ $v = x^2 + 3x - 10$
- 1) $(-12,25; +\infty)$ 4) $(16,75; +\infty)$
- 2) $(-\infty; -12,25]$ 5) $(-\infty; 16,75)$
- 3) $[-12,25; +\infty)$ 6) $[-12,25; +\infty)$
- 9. МНОЖЕСТВО ЗНАЧЕНИЙ ФУНКЦИИ $y = -x^2 + 5x - 2$
 - 1) $[-2; +\infty)$
- 4) $(-\infty; 4,25]$
- 2) $(-\infty; 4,25)$
- 5) $(-2; +\infty)$
- 3) $(-\infty; -2]$
- 6) $[4,25; +\infty)$
- 10. ВЕТВИ ПАРАБОЛЫ $\{y = -3x^2 + 4x - 3, y = 2x^2 - 7x + 1,$ $v = x^2 - 0.2x + 7$ }НАПРАВЛЕНЫ
 - вверх
 - 2) вниз
- 11. ГРАФИК ФУНКЦИИ $y = x^2 - 10x - 24 \Pi EPECEKAET$ ОСЬ х В ТОЧКАХ
 - 1) (-2; 0)
- 4) (2; 0) 5) (0;12)
- 2) (-12; 0) 3) (12; 0)
- 6)(0;2)
- 12. ГРАФИК ФУНКЦИИ $v = x^2 + x - 90 \Pi EPECEKAET$ ОСЬ х В ТОЧКАХ
 - 1) (10; 9)
- 4) (-9; 0)

- 2) (-10; 0) 5) (0;10)
- 3) (10; 0) 6) (9; 0)
- 13. ГРАФИК ФУНКЦИИ $y = 2x^2 + x + 67$ HEPECEKAET ОСЬ у В ТОЧКЕ
 - 1) (0; 0)
- 3) (67; 0)
- 2) (-67; 0) 4) (0; 67)
- 14. ГРАФИК ФУНКЦИИ $y = 5x^2 - 11x + 2$ РАСПОЛОЖЕН {выше,ниже} ОСИ х НА
 - 1) $(-\infty; 0,2)$
 - 2) $(2; +\infty)$
 - 3) $(-\infty; 0,2) \cup (2; +\infty)$
 - 4) (-2; 0,2)
 - 5) (0,2; 2)
 - 6) $(-\infty; -0.2) \cup (2; +\infty)$
- 15. ГРАФИК ФУНКЦИИ $y = 9x^2 - 30x + 25$ РАСПОЛО-ЖЕН {выше,ниже} ОСИ х НА
- 1) $(-\infty; -6)$
- 2) $(2,5; +\infty)$
- 3) $(-\infty; -6) \cup (2,5; +\infty)$
- 4) (-6; 2,5)
- 5) (-2,5; 6)
- 6) $(-\infty; -2.5) \cup (6; +\infty)$

Вашему вниманию предлагаются задания, в которых надо установить правильную последовательность:

- 16. ПОСТРОЕНИЕ ГРАФИКА КВАЛРАТИЧНОЙ ФУНКЦИИ
- □ соединить отмеченные точки плавной линией;
- □ составить таблицу значений функции, учитывая ось симметрии параболы;
- □ найти координаты вершины параболы и отметить её в координатной плоскости.

17. РЕШЕНИЕ НЕРА-ВЕНСТВ ВТОРОЙ СТЕПЕНИ С ОДНОЙ ПЕРЕМЕННОЙ

— найти на оси х промежутки, для которых точки параболы расположены выше оси х (если решают неравенство $ax^2 + bx + c$) или ниже оси х (если решают неравенство $ax^2 + bx + c$);

 □ — найти дискриминант квадратного трёхчлена ax² + bx + с и выяснить, имеет ли трёхчлен корни;

□ — если трёхчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > о или вниз при а; если трёхчлен не имеет корней, то схематически изображают параболу, расположенную в верхней

полуплоскости при а > о или в нижней при а.

18. ДЛЯ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ ВТОРОЙ СТЕПЕНИ СПОСОБОМ ПОДСТАНОВКИ ПОСТУПАЮТ СЛЕДУЮЩИМ ОБРАЗОМ

 □ – решают получившееся уравнение с одной переменной;

 \Box — находят соответствующие значения второй переменной;

 □ — выражают из уравнения первой степени одну переменную через другую;

□ — подставляют полученное выражение в уравнение второй степени, в результате чего приходят к уравнению с одной переменной.

Методика

